Australian Sheep Breeding Values (ASBV's)

The Long and Short of Farm Production

• Farm Production is an Interaction of Genetics and Environment

Performance = *Environment* × *Genetics*

What Impacts a Sheep's Performance

What Impacts a Sheep's Performance

Example; Fleece Traits

What Impacts a Sheep's Performance

Example; Fertility

How an ASBV is Calculated

Ram selection is important - better performance !! - more \$\$dollars !!

Genetics works for wool sheep! Genetics works for meat sheep!

Tooraweenah Trial

- North of Dubbo in 2003
- Pearts unhappy with their lamb performance

Wanted to;

- 1. Maximise lamb sales before mid November and not impact on carcass weight
- 2. Improve quality
- 3. Find out if faster growth would improve returns

- Purchased new high growth rams
- Ran trial to compare to current rams
- Two sire groups 1,000 ewes each same breeding and management

Results

	% of mob killed by 20 weeks and HSCW	% of mob killed by 27 weeks and HSCW					
High growth rams	57.2% 24.2 kg	97.3% 24.0 kg					
Low growth rams	26.1% 22.5 kg	77.3% 22.8 kg					

Source: McLeod and White NSW DPI

Lambs from high growth rams were heavier at slaughter

Lambs from high growth rams gained 50g/day more than lambs from low growth rams

How many more dollars \$\$\$ could you expect high performance rams????

- The high growth lambs were 5.4 kg heavier @ 1st slaughter date:
- Using a market price of \$6.00/kg @ 46% (DP) lambs would be 2.5 kg HSCW heavier
- = \$15 per lamb extra or

@ 60 lambs /ram / year with 4 joinings (1.5% joining 90% lambing)

\$3600 more \$\$ per ram or \$900 per ram per year

What ASBV's are available?

• major production areas

- Growth
- Carcase
- Reproduction
- Wool
- Health

Examples of some traits

Live weight (WT) Eye muscle depth (EMD) Fat depth (FAT) Number of Lambs Born (NLB) Number of Lambs Weaned (NLW) Fleece weight (FW) Fibre Diameter (FD) Staple Length (SL) Staple Strength (SS) Worm Egg Count (WEC) Breech Wrinkle (BWR) Breech Cover (BCOV) Dags (DAG)

What ASBV's are available?

• For a number of ages

- Birth = b
- Weaning = w
- Post-weaning = p
- Yearling = y
- Hogget = h
- Adult = a

What is the ASBV? Birth weight? BWT Post-weaning fat depth? PFAT Yearling greasy fleece weight? YGFW Weaning worm egg count? WWEC

- ASBVs are based around 0
- Negative ASBVS are not always bad
- Accuracy is a reflection of the amount of info used
- ASBVS need to be compared to the current average

What ASBVs can be compared?

Terminal breeds

Maternal breeds

Border Leicester

Coopworth

Composite Maternal

East Friesian

SAMM

Poll Dorset Suffolk White Suffolk Texel Southdown Dorper etc

Merino

Poll Merino

Merinos

Superfine

Dohne

Selection Indexes

- Breeding objectives include more than one trait
- A 'selection index' combines a number of ASBVs into one ranking figure
- The emphasis put on each trait depends on the breeding objective
- The index gives the overall merit, or score, to achieve a certain production goal

Selection Indexes

Maternal indexes BLX MCP MCP+ MWP+

Terminal indexes TCP Eating Quality LAMB Eating Quality

MERINOSELECT indexes Fibre Production Fibre Production + Merino Production Merino Production + Dual Purpose Dual Purpose +

Dohne indexes Dohne Base Dohne Plus

Matching breeding objectives with ASBVs

Trait group	Relevant ASBV traits
Growth	Live weight (WT)
Carcase	Eye muscle depth (EMD), fat (FAT), intramuscular fat (IMF), shear force (SF5)
Reproduction	Number of lambs weaned (NLW)
Wool	Fleece weight (GFW), fibre diameter (FD) staple strength (SS), staple length (SL)
Health	Worm egg count (WEC), breech wrinkle (BRWR), breech cover (BCOV), Dag (DAG)

Don't forget the age stage that is most relevant to you

ASBVs Cannot Be Used Alone

- As much as ever before making sure a ram looks right is important.
- It must be:
 - sound and have good structure
 - suitable for your farm
 - wool quality 'fit for purpose'
- This can differ between people and regions

Some Traits that can be Measured by Stud Breeders

- Birthweight
- Maternal behaviour score
- Number of lambs born and raised
- Weaning weight (100 days)
- Post weaning (200 days) weight, eye muscle, fat, worm egg count and scrotal circumference
- Yearling (300 days) weight, wool test and greasy fleece weight
- Hogget (400 days) wool test and greasy fleece weight
- 200 DNA markers for traits including Lean Meat Yield, IMF and Shear Force

Percentile Bands

ASBV and Index Percentile Band Table

Analysis MERINO Run date 21-Jun-19

Animals born in 2017

	Yfd	Ycfw	Yfdcv	Ysl	Yss	NLW	Ysc	Ywec	Pwt	Ywt	Yfat	Yemd			
Band	u	%	%	mm	Nktex	%	cm	%	kg	kg	mm	mm	DP+	MP+	FP+
0	-6.2	51.3	-3.8	32.3	12.1	24	6.3	-94	12.9	16.4	3.6	5.9	232.8	223.0	192.8
1	-3.7	32.4	-2.6	22.5	6.9	16	4.7	-81	8.5	11.6	2.0	3.1	193.5	187.9	169.3
2	-3.3	30.2	-2.4	20.8	6.0	14	4.2	-73	8.0	10.9	1.8	2.8	185.2	180.0	163.5
3	-3.1	29.0	-2.3	19.7	5.4	12	3.9	-68	7.6	10.4	1.6	2.6	179.4	175.2	160.2
4	-2.9	27.9	-2.2	18.8	5.0	11	3.7	-65	7.4	10.1	1.5	2.5	175.2	171.6	157.8
5	-2.8	27.1	-2.1	18.1	4.7	11	3.6	-61	7.1	9.8	1.4	2.4	171.9	169.1	156.0
10	-2.4	24.1	-1.8	15.3	3.7	8	3.1	-52	6.3	8.8	1.2	2.0	163.3	161.4	150.2
(15) ←	-2.1	22.1	-1.6	13.4	3.0	7	2.8	-46	5.7	- 8.0	1.0	1.7	158.3	156.9	146.7
20	-1.9	20.5	-1.4	12.0	2.5	6	2.6	-40	5.2	7.4	0.8	1.4	154.8	153.5	144.0
25	-1.8	19.2	-1.3	10.8	2.1	5	2.4	-36	4.8	6.9	0.6	1.2	151.7	150.6	141.7
30	-1.6	17.9	-1.2	9.9	1.7	4	2.3	-31	4.4	6.4	0.5	1.0	149.0	147.9	139.6
35	-1.5	16.8	-1.1	9.0	1.4	3	2.1	-27	4.0	6.0	0.4	0.8	146.5	145.5	137.7
40	-1.4	15.8	-0.9	8.2	1.0	3	2.0	-23	3.7	5.5	0.3	0.7	144.2	143.2	135.9
45	-1.2	14.7	-0.8	7.5	0.7	2	1.8	-19	3.3	5.1	0.2	0.5	141.9	141.0	134.2
50	-1.1	13.7	-0.7	6.7	0.4	1	1.7	-15	3.0	4.7	0.1	0.4	139.7	138.9	132.5
55	-1.0	12.6	-0.6	6.0	0.1	0	1.5	-12	2.6	4.3	0.0	0.2	137.4	136.7	130.8
60	-0.9	11.4	-0.5	5.2	-0.2	0	1.4	-8	2.3	3.8	-0.1	0.1	135.1	134.5	129.1
65	-0.8	10.2	-0.4	4.4	-0.6	-1	1.2	-4	1.9	3.4	-0.2	0.0	132.7	132.1	127.2
70	-0.6	8.9	-0.2	3.4	-1.0	-2	1.1	2	1.5	2.9	-0.3	-0.2	130.2	129.7	125.2
75	-0.5	7.5	-0.1	2.4	-1.4	-3	0.9	7	1.1	2.4	-0.4	-0.3	127.4	126.9	122.8
80	-0.3	5.8	0.1	1.2	-1.8	-3	0.7	13	0.6	1.9	-0.5	-0.5	124.2	123.8	120.1
85	-0.1	3.8	0.3	-0.3	-2.4	-5	0.5	21	0.1	1.2	-0.6	-0.6	120.3	120.3	116.5
90	0.2	1.1	0.5	-2.4	-3.1	-6	0.2	30	-0.5	0.4	-0.8	-0.8	115.1	115.7	111.2
95	0.7	-3.4	0.9	-5.4	-4.2	-9	-0.3	42	-1.4	-0.8	-1.0	-1.1	106.4	107.6	103.1
96	0.9	-4.9	1.0	-6.2	-4.6	-9	-0.4	46	-1.7	-1.1	-1.1	-1.3	103.5	104.5	100.5
97	1.0	-6.9	1.2	-7.2	-5.1	-11	-0.6	50	-2.0	-1.5	-1.1	-1.4	99.7	99.8	96.8
98	1.4	-9.7	1.4	-8.5	-5.7	-13	-0.9	54	-2.5	-2.1	-1.2	-1.5	93.6	90.4	88.8
99	1.9	-14.1	1.7	-10.3	-6.8	-22	-1.2	64	-3.2	-3.1	-1.4	-1.8	83.5	73.8	62.4
100	6.7	-37.4	3.7	-22.3	-13.0	-43	-3.5	117	-8.9	-11.7	-2.4	-4.1	-0.1	32.9	20.0

8.0 74 % YCFW (%)

YWT

(kg)

9.0

Sheep Meat Eating quality

- Key to consumers important to WAPC going forward
- Unfavourable association with Lean Meat Yield
- Important for willingness to pay especially long term
- We can measure Shear Force and Intramuscular Fat DNA markers
- Moderate to High heritability so can select using ASBV's with confidence
- Good on farm management is critical to capitalize on genetics

Coming up to sale day

- Preparation is key!
- Define your breeding objective
- Select a relevant index and look at individual traits
- Rank the animals that will be available on the day

Sale catalogue

<u>Animal ID</u>	<u>YWT</u>	<u>AWT</u>	<u>YEMD</u>	<u>YFAT</u>	<u>YCFW</u>	<u>YFD</u>	YDCV	<u>YCUR</u>	<u>YSL</u>	<u>YSS</u>	<u>YWEC</u>	<u>NLW</u>	EBWR	<u>DP</u>	<u>DP+</u> ↓
Ram A	3.6	0.8	-0.1	-0.3	37.4	- 2.4	0.0	-4.3	2.0	4.0	76	30%	0.7	137	248
	99%	98%	97%	96%	98%	99%	98%	98%	98%	97%	91%	79%	98%	40%	82%
Ram B	9.2	5.7	2.1	1.1	36.7	0.2	-1.7	-4.7	8.9	5.3	-51	28%	-0.3	145	243
	98%	96%	96%	93%	97%	98%	97%	96%	97%	96%	92%	75%	96%	39%	79%
Ram C	10.6	9.7	1.2	1.0	35.2	-0.8	-0.4	-5.6	12.3	0.4	60	23%	-0.3	160	237
	97%	91%	97%	96%	89%	92%	90%	91%	85%	75%	78%	54%	62%	37%	61%
Ram D	7.5	5.8	1.4	0.3	28.5	-1.4	-1.5	-4.6	10.1	6.4	18	23%	-0.3	144	232
	85%	83%	72%	68%	80%	80%	74%	80%	74%	69%	54%	50%	93%	33%	56%
Ram E	12.5	11.1	1.5	0.8	39.2	-0.2	0.0	-0.5	0.4	2.3	-25	18%	-0.3	161	231
	90%	83%	86%	82%	88%	91%	88%	90%	89%	86%	77%	52%	60%	34%	58%

Linkage: How can we compare performance across environments?

Α

Comparing Rams Across Properties

Linkage

Comparing Rams Across Properties

Comparing Rams Across Properties

2. Breeding Objective

3. The index for you

Select an index – Maternal breeders

1. Improving lamb eating quality & productivity Dave Pethick

Veterinary & Animal Science

Advanced Livestock Measurement Technologies (ALMTech) Meat & Livestock Australia

2. ASBV's and Indexes explained

Sandy Forbes

Royston Farms, Napier

Royston White Dorper

Balancing lean meat yield & eating quality

- Lean meat yield & measurement (LMY)
- Consumer eating quality results
- Carcase grading for LMY & Eating Quality
- Role of intramuscular fat to counter LMY
- Genetics for EQ

Background

- Lamb right up there on expense = \$/kg lean
 - Chicken 3-7 times cheaper
 - Pork 2-3 times cheaper
- Consumers around the world make a deliberate decision, over and above price, to purchase lamb
LMY is <u>especially</u> important in lamb:

The final grade

Identify 4 grades

SQ4 = 0.3T + 0.1J + 0.3F + 0.3OL

Willingness to pay for Lamb

	Fail	Pass (3*)	Credit (4*)	Distinction (5*)				
USA	0.5	1	1.5	2.0				
China	0.6	1	1.5	2.0				
AUS	0.5	1	1.4	1.9				

Grilled lamb n= 740 consumers per country eating same lamb

O'Reilly, Pannier, Garmyn, Miller, Meng, Luo, Pethick 2016

Carcase Value

Provenance Loyalty offal/fat/bones/skins/wool

Carcase Value

LMY Lean meat yield MSA 3*4*5* good/better/best

LMY – difficult to measure

CT scan Lean = gold standard

calibrate any measuring instrument against the CT composition

Terminology

◆Lean Meat Yield (LMY) – Gold standard = CT lean

- Fat
- Muscle
- Bone

◆ Saleable yield – Industry standard

- It's what the packer/retailer sells so very important
- Includes some fat and bone

Predicting cut weight using HCWT plus CT composition

X-ray prediction of lean meat yield

A new era or measurement

Palpated GR and HCW

R²=0.1-0.2; RMSE=3.0

DEXA → LMY and/or Precision cutting

Dual Energy X ray = DEXA

Carcase Value

Genetically - lean meat yield and eating quality are antagonistic

- Its basic logic
- Our own data tells us so

Lean meat yield and eating quality are antagonistic

Carcase Value

MLA Genetic Resource Flock WA (DIPIRD, Katanning) & NSW

Eating Quality data – 1st cut

- 23kg HCW (15 -> 36kg)
- 1,702 lambs
- Short loin (sirloin) & topside grilled & each tested by 10 consumers
- 6,800 consumers

New Meat Standards Australia grading model

Next we used carcase variables to predict the consumer score (SQ4)

- HCW
- Lean Meat Yield (-ve)
- Intramuscular fat (+ve)
- Sire type (Terminal, Maternal, Merino)

All are significant predictors

Then can estimate Eating Quality grade

Sire type x **IMF** x **LMY** x **cut** = EQ score prediction

Current data shows for the lamb short loin (striploin)

Unsatisfactory (2* fail) 7%
Good every day (3* Good) 34%
Better then every day (4* Better) 35% - 60%
Premium (5* Best) 24%

So carcase grading and MSA Mark II will underpin lamb brands to desired quality

Practical accuracy due to grading

- 5* loin 20% chance ungraded, after grading 60% chance
- 2* topside 33% chance ungraded 8% chance after grading

This says – every day brand

- To guarantee a 3* lamb short loin in 20-30kg range:
- Wide window BUT down at 3% IMF your in strife !!

This says – supreme lamb brand

To guarantee a 4* or 5* lamb short loin in 20-30kg range:

- LMY and IMF interact
- Higher IMF means can increase LMY

Sweet spot something like

- LMY 55-59% (v. roughly fat score 2-4)
- IMF $\geq 4.5\% \geq 4^*$
- $IMF \ge 5.5\% = 5^*$

Intramuscular fat (IMF) – major factor to counter LMY

- Juiciness, flavour, tenderness
- $4.3 \pm 0.04\%$ (Terminal X)
- Called marbling in beef
- Heritability about 50%

Intramuscular fat abattoir grading in lamb

- Extremely difficult in lamb
- 10 per minute chain speed
- No 'ribbing' in lamb
- They would like a hot measure !!
- •

Intramuscular fat grading in lamb all still in R&D phase

<u>Cut Surface</u>

 Frontmatec rib eye hyperspectral camera – it works

 NIR – SOMA optics (looks promising)

Penetrating probes

 MEQ probe – laser reflectance (some promise)

Genetics to manage Eating Quality

Australian Sheep Breeding Values

- Lean Meat Yield (LMY)
- Intramuscular fat (IMF)
- EQ/LMY index's
- Progressing to actual Consumer Score breeding value

IMF breeding values percentile bands (best with genomics)

Percentile Report

Analysis **TERMINAL** Dated 1/12/2018

Animals born in 2017					Οοι	int 13	34915																		
	Bwt	Wwt	PWwt	Ywt	Pfat	Yfat	Pemd	Yemd	Ysc	Hsc	Pfec	Yfec	MWwt	NLW	LMY	IMF	Dress	rF5 آ		Carcase +	•	MCP	EC	2	
Band	kg	kg	kg	kg	mm	mm	mm	mm	cm	cm	%	%	kg	%	%	%	%	N	LEQ		Trade\$	S	RC	LAMB2	2020
0	-0.80	16.0	23.8	25.1	2.5	2.9	5.5	5.7	5.9	5.3	-81	-76	9.2	21	6.9	1.3	4.4	-8.9	87.4	251.0	119.1	173.2 15	9.4 182	. <mark>3</mark> 122	2.7
1	-0.54	11.8	18.3	18.8	0.9	0.9	3.7	3.5	5.1	4.5	-64	-60	5.6	11	5.	0.1	3.0	-1.8	151.1	220.4	114.5	156.2 14	6.9 <mark>14</mark> 9	. <mark>6</mark> 117	/.0
2	-0.49	11.5	17.8	18.2	0.7	0.7	3.4	3.2	4.9	4.4	-59	-56	5.0	10	4)	0.0	2.{	-1.3	1 8.2	216.8	114.1	154.2 14	5.3 147	' <mark>.0</mark> 116	ծ.4
3	-0.45	11.2	17.4	17.8	0.6	0.6	3.2	3.1	4.8	4.3	-56	-54	4.7	10	47	0.0	2. ′	-1.0	14 6.4	214.5	113.8	152.8 14	4.3 145	. <mark>3</mark> 116	3.0
4	-0.41	11.0	17.1	17.5	0.5	0.5	3.1	2.9	4.7	4.1	-54	-52	4.4	9	4 6	-0.1	27	-0.7	14 5.0	212.8	113.6	151.8 14	3.6 144	.1 115	5.7
5	-0.37	10.9	16.9	17.3	0.4	0.4	3.0	2.8	4.6	4.1	-52	-50	4.2	9	4.5	-0.1	2 6	-0.5	14 .8	211.5	113.4	151.0 14	3.0 143	. <mark>0</mark> 115	5.5
10	-0.01	10.4	16.1	16.5	0.2	0.1	2.6	2.5	4.4	3.9	-45	-44	3.8	7	4.2	-0.2	: 5	0.1	14 .0	206.4	112.7	148.3 14	0.9 139	. <mark>4</mark> 114	1.6
15	0.11	10.0	15.5	15.9	0.0	0.0	2.4	2.2	4.2	3.7	-41	-39	3.5	6	.9	-0.2	23	0.6	13.3	202.7	112.3	146.3 13	9.4 <mark>13</mark> 6	. <mark>7</mark> 114	1.0
20	0.17	9.8	15.1	15.5	-0.1	-0.1	2.2	2.1	4.1	3.6	-37	-36	3.3	6	8.	-0.3	2.2	0.9	13: 1	199.6	111.9	144.7 13	8.1 1 <mark>3</mark> 4	.7 113	3.5
25	0.21	9.5	14.7	15.1	-0.2	-0.2	2.1	1.9	4.0	3.5	-34	-33	3.2	5	3.6	-0.3	2.1	1.3	133 5	196.9	111.5	143.3 13	7.1 133	. <mark>0</mark> 113	3.1
30	0.24	9.3	14.4	14.8	-0.2	-0.3	1.9	1.7	3.9	3.4	-31	-29	3.0	5	3.4	-0.3	2 1	1.6	132 0	194.2	111.1	142.1 13	6.1 <mark>13</mark> 1	.6 112	2.7
35	0.26	9.1	14.0	14.5	-0.3	-0.4	1.8	1.6	3.8	3.3	-28	-27	2.9	4	3.3	-0.4	2 0	1.9	130 7	191.8	110.7	140.8 13	5.1 1 <mark>3</mark> 0	.3 112	2.4
40	0.29	8.9	13.7	14.2	-0.4	-0.5	1.7	1.5	3.7	3.2	-25	-24	2.8	4	3.2	-0.4	· 9	2.2	129 4	189.3	110.4	139.6 13	4.2 1 <mark>2</mark> 9	.1 112	2.0
45	0.31	8.7	13.3	13.8	-0.4	-0.5	1.6	1.4	3.6	3.1	-23	-21	2.7	3	3.0	-0.4	· 8	2.5	128 2	186.9	110.0	138.4 13	3.3 1 <mark>2</mark> 7	. <mark>9</mark> 111	1.7
50	0.33	8.5	13.0	13.5	-0.5	-0.6	1.5	1.3	3.5	3.0	-20	-18	2.5	3	2.9	-0.5	· 7	2.8	127 1	184.3	109.6	137.2 13	2.3 <mark>12</mark> 6	.7 111	1.3
55	0.35	8.3	12.6	13.1	-0.5	-0.6	1.4	1.2	3.4	2.9	-17	-15	2.4	2	2.7	-0.5	· .7	3.1	126 0	181.5	109.2	135.9 13	1.3 125	. <mark>6</mark> 111	0.1
60	0.37	8.0	12.2	12.8	-0.6	-0.7	1.3	1.1	3.3	2.9	-14	-12	2.3	2	2.6	-0.5	- 6	3.5	124_9	178.7	108.7	134.6 13	0.2 124	.5 110).6
65	0.39	7.8	11.8	12.3	-0.7	-0.8	1.1	0.9	3.2	2.8	-11	-9	2.1	1	.4	-0.6	ŕ 5	3.8	12: .8	175.4	108.3	133.2 12	9.1 123	.4 110).1
70	0.41	7.5	11.3	11.8	-0.7	-0.8	1.0	0.8	3.1	2.7	-7	-6	2.0	1	1.2	-0.6	4	4.2	12: .7	171.9	107.8	131.7 12	7.8 122	.3 109) .7
75	0.43	7.1	10.8	11.3	-0.8	-0.9	0.9	0.7	3.0	2.6	-3	-2	1.8	0	2.0	-0.7	3	4.6	12.4	168.0	107.4	130.1 12	6.4 <mark>12</mark> 1	.1 109) .2
80	0.46	6.7	10.2	10.6	-0.9	-1.0	0.8	0.6	2.9	2.6	1	3	1.7	-1	17	-0.7	12	5.1	12).1	163.8	106.8	128.4 12	4.7 119	. <mark>8</mark> 108	3.7
85	0.48	6.2	9.4	9.7	-1.0	-1.1	0.6	0.4	2.7	2.4	6	8	1.4	-1	14	-0.8	1.1	5.6	113.5	159.5	106.2	126.3 12	2.8 118	. <mark>2</mark> 108	3.1
90	0.52	5.6	8.6	8.5	-1.1	-1.2	0.4	0.2	2.4	2.2	13	14	1.2	-3	1.0	-0.8	0.	6.2	116.5	154.3	105.4	123.5 12	0.5 116	. <mark>2</mark> 107	7.4
95	0.57	4.7	7.5	7.0	-1.3	-1.4	0.1	-0.1	2.1	1.6	23	24	0.7	-5	0.5	-0.9	0.1	6.9	1 3.4	147.4	104.0	119.3 11	7.4 113	.1 106	ծ.5
96	0.59	4.4	7.2	6.6	-1.3	-1.4	0.0	-0.2	2.0	1.4	26	27	0.6	-5	0.4	-0.9	0.6	7.1	1 2.4	145.5	103.5	118.1 11	6.5 112	.1 106	<u>э.2</u>
97	0.60	4.1	6.8	6.1	-1.4	-1.5	-0.1	-0.3	1.8	1.2	30	30	0.4	-6	0.2	-1.0	0.5	7.4	11.2	143.3	102.8	116.6 11	5.4 111	.0 105	5.9
98	0.63	3.8	6.3	5.6	-1.5	-1.6	-0.2	-0.4	1.7	1.0	34	34	0.2	-7	0.0	-1.0	0.4	7.8	109.6	140.5	101.9	114.7 11	4.1 109	.3 105	5.5
99	0.67	3.3	5.6	4.7	-1.6	-1.7	-0.5	-0.6	1.4	0.7	41	40	-0.2	-8	-0.3	-1	0.2	8.4	106.4	135.9	100.1	111.5 11	2.1 106	. <mark>2</mark> 104	1.9
100	0.94	-5.4	-7.6	-7.4	-2.7	-2.9	-2.6	-2.4	0.1	0.2	110	84	-2.6	-16	-3.3	-1.6	-1.3	14.1	88.5	59.0	78.1	78.3 8	6.9 <mark>88</mark>	.3 94	1.5

IMF breeding values percentile bands

Percentile Report

Analysis **TERMINAL** Dated 1/12/2018

Animals born in 2017					Count 134915					$\land \land \land$											$\mathbf{\wedge}$					
	Bwt	Wwt	PWwt	Ywt	Pfat	Yfat	Pemd	Yemd	Ysc	Hsc	Pfec	Yfec	MWwt	NLW	LMY	IMF	Dress	rF5 آر ک		Carc	se +		MCP		EQ	
Band	kg	kg	kg	kg	mm	mm	mm	mm	cm	cm	%	%	kg	%	%	%	%	Ν	LEQ			Trade\$		SRC	<u> </u>	\MB2020
0	-0.80	16.0	23.8	25.1	2.5	2.9	5.5	5.7	5.9	5.3	-81	-76	9.2	21	6.9	1.3	4.4	-8.9	87.4	25	.0	119.1	173.2	159.4	182.3	122.7
1	-0.54	11.8	18.3	18.8	0.9	0.9	3.7	3.5	5.1	4.5	-64	-60	5.6	11	5.	0.1	3.0	-1.8	151.1	22).4	114.5	156.2	146.	149.6	17.0
2	-0.49	11.5	17.8	18.2	0.7	0.7	3.4	3.2	4.9	4.4	-59	-56	5.0	10	4)	0.0	2.{	-1.3	1 8.2	21	6.8	114.1	154.2	145 3	147.0	16.4
3	-0.45	11.2	17.4	17.8	0.6	0.6	3.2	3.1	4.8	4.3	-56	-54	4.7	10	47	0.0	2. /	-1.0	14 6.4	21	1.5	113.8	152.8	144 3	145.3	116.0
4	-0.41	11.0	17.1	17.5	0.5	0.5	3.1	2.9	4.7	4.1	-54	-52	4.4	9	4 6	-0.1	27	-0.7	14 5.0	21	2.8	113.6	151.8	143 6	144.1	1 5.7
5	-0.37	10.9	16.9	17.3	0.4	0.4	3.0	2.8	4.6	4.1	-52	-50	4.2	9	4.5	-0.1	2 6	-0.5	14 .8	21	.5	113.4	151.0	14:.0	143.0	1 5.5
10	-0.01	10.4	16.1	16.5	0.2	0.1	2.6	2.5	4.4	3.9	-45	-44	3.8	7	4 .2	-0.2	: 5	0.1	14 .0	20	.4	112.7	148.3	14(.9	139.4	1 4.6
15	0.11	10.0	15.5	15.9	0.0	0.0	2.4	2.2	4.2	3.7	-41	-39	3.5	6	.9	-0.2	23	0.6	13.3	20	.7	112.3	146.3	13 .4	136.7	114.0
20	0.17	9.8	15.1	15.5	-0.1	-0.1	2.2	2.1	4.1	3.6	-37	-36	3.3	6	8. (-0.3	2.2	0.9	13: 1	19	.6	111.9	144.7	133.1	134.7	113.5
25	0.21	9.5	14.7	15.1	-0.2	-0.2	2.1	1.9	4.0	3.5	-34	-33	3.2	5	3.6	-0.3	2 .1	1.3	133 5	19	.9	111.5	143.3	13 ′.1	133.0	113.1
30	0.24	9.3	14.4	14.8	-0.2	-0.3	1.9	1.7	3.9	3.4	-31	-29	3.0	5	3.4	-0.3	2 1	1.6	132 0	19	.2	111.1	142.1	135.1	131.6	11 2.7
35	0.26	9.1	14.0	14.5	-0.3	-0.4	1.8	1.6	3.8	3.3	-28	-27	2.9	4	3.3	-0.4	2 0	1.9	130 7	19	.8	110.7	140.8	135.1	130.3	112.4
40	0.29	8.9	13.7	14.2	-0.4	-0.5	1.7	1.5	3.7	3.2	-25	-24	2.8	4	3.2	-0.4	· 9	2.2	129 4	18	.3	110.4	139.6	13 1.2	129.1	112.0
45	0.31	8.7	13.3	13.8	-0.4	-0.5	1.6	1.4	3.6	3.1	-23	-21	2.7	3	3.0	-0.4	· 8	2.5	128 2	18	.9	110.0	138.4	133.3	127.9	11 .7
50	0.33	8.5	13.0	13.5	-0.5	-0.6	1.5	1.3	3.5	3.0	-20	-18	2.5	3	<u>2.9</u>	-0.5	· 7	2.8	127 1	18	.3	109.6	137.2	13 2.3	126.7	111.3
55	0.35	8.3	12.6	13.1	-0.5	-0.6	1.4	1.2	3.4	2.9	-17	-15	2.4	2	2.7	-0.5	17	3.1	126 0	18	.5	109.2	135.9	13 .3	125.6	111.0
60	0.37	8.0	12.2	12.8	-0.6	-0.7	1.3	1.1	3.3	2.9	-14	-12	2.3	2	2.6	-0.5	1.6	3.5	124.9	17	.7	108.7	134.6	13).2	124.5	110.6
65	0.39	7.8	11.8	12.3	-0.7	-0.8	1.1	0.9	3.2	2.8	-11	-9	2.1	1	.4	-0.6	5	3.8	12: .8	17	.4	108.3	133.2	12).1	123.4	110.1
70	0.41	7.5	11.3	11.8	-0.7	-0.8	1.0	0.8	3.1	2.7	-7	-6	2.0	1	1.2	-0.6	4	4.2	12: .7	17	.9	107.8	131.7	12 .8	122.3	1(9.7
75	0.43	7.1	10.8	11.3	-0.8	-0.9	0.9	0.7	3.0	2.6	-3	-2	1.8	0	2.0	-0.7	3	4.6	12.4	16	.0	107.4	130.1	126.4	121.1	1 9.2
80	0.46	6.7	10.2	10.6	-0.9	-1.0	0.8	0.6	2.9	2.6	1	3	1.7	-1	17	-0.7	12	5.1	12).1	16	8	106.8	128.4	124 .7	119.8	1 8.7
85	0.48	6.2	9.4	9.7	-1.0	-1.1	0.6	0.4	2.7	2.4	6	8	1.4	-1	14	-0.8	1.1	5.6	113.5	159	5	106.2	126.3	122 8	118.2	1)8.1
90	0.52	5.6	8.6	8.5	-1.1	-1.2	0.4	0.2	2.4	2.2	13	14	1.2	-3	1.0	-0.8	0.)	6.2	116.5	154	3	105.4	123.5	120 5	116.2	107.4
95	0.57	4.7	7.5	7.0	-1.3	-1.4	0.1	-0.1	2.1	1.6	23	24	0.7	-5	0. i	-0.9	0.1	6.9	1 3.4	141	4	104.0	119.3	117.1	113.1	06.5
96	0.59	4.4	7.2	6.6	-1.3	-1.4	0.0	-0.2	2.0	1.4	26	27	0.6	-5	0.4	-0.9	0.6	7.1	1 2.4	14	5	103.5	118.1	116.	112.1	06.2
97	0.60	4.1	6.8	6.1	-1.4	-1.5	-0.1	-0.3	1.8	1.2	30	30	0.4	-6	0.2	-1.0	0.5	7.4	11.2	14:	3	102.8	116.6	115.4	111.0	105.9
98	0.63	3.8	6.3	5.6	-1.5	-1.6	-0.2	-0.4	1.7	1.0	34	34	0.2	-7	0.0	-1.0	0.4	7.8	109.6	14(5	101.9	114.7	114.1	109.3	105.5
99	0.67	3.3	5.6	4.7	-1.6	-1.7	-0.5	-0.6	1.4	0.7	41	40	-0.2	-8	-0.3	-1	0.2	8.4	106.4	135	9	100.1	111.5	112.1	06,1	104.9
100	0.94	-5.4	-7.6	-7.4	-2.7	-2.9	-2.6	-2.4	0.1	0.2	110	84	-2.6	-16	-3.3	-1.6	-1.3	14.1	88.5	59	0	78.1	78.3	86.9	88.3	94.5

Eating quality ASBVs combined with other traits in EQ index

Maintaining EQ

Improving EQ

EQ Post-weaning weight-24% 20% Carcase eye muscle-Carcase fat depth -1% Dressing%-9% Lean meat yield -5% Intramuscular fat-16% Shear force -26% 10 $\dot{20}$ 30 Contribution to index (%) © Sheep Genetics 2019 ASBV

Sheep Genetics fact sheets

Terminal indexes

A ram breeder's guide

http://www.sheepgenetics.org.au/files/8224f5bd-93af-4638-aa7f-aab200fded17/19MLA-Breeder-terminal.pdf http://www.sheepgenetics.org.au/files/f5ecdd78-68e5-46b7-9159-aab200fdeebd/19MLA-Buyer-terminal.pdf

Changing selection emphasis

MF% -0.25 -0.50 -0.75-1.00 2015 2005 2010 Year of birth

Genetic trends in IMF for Meat Elite flocks

Take home messages

- LMY important
- Eating quality important
- Both needed to predict eating quality
- Both important for carcase value

Take home messages

- Genetics of eating quality is here NOW
- Carcase grading rapidly approaching
- New MSA model is ready to go !
- Genetics and Nutrition BOTH play a role
- Current MSA principles still apply (e-stimulation; meat aging, best practice handling, no entire 3)

Graham Gardner Liselotte Pannier Fiona Anderson Sarah Stewart Honor Calnan

Daniel Brown Andrew Swan

Peter McGilchrist

